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CHAPTER

A Hidden Markov Models

Chapter 8 introduced the Hidden Markov Model and applied it to part of speech
tagging. Part of speech tagging is a fully-supervised learning task, because we have
a corpus of words labeled with the correct part-of-speech tag. But many applications
don’t have labeled data. So in this chapter, we introduce the full set of algorithms for
HMMs, including the key unsupervised learning algorithm for HMM, the Forward-
Backward algorithm. We’ll repeat some of the text from Chapter 8 for readers who
want the whole story laid out in a single chapter.

A.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a modelMarkov chain

that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, like the weather. A Markov chain makes a
very strong assumption that if we want to predict the future in the sequence, all that
matters is the current state. The states before the current state have no impact on the
future except via the current state. It’s as if to predict tomorrow’s weather you could
examine today’s weather but you weren’t allowed to look at yesterday’s weather.
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Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution π is required; setting π = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables q1,q2, ...,qi. A Markov
model embodies the Markov assumption on the probabilities of this sequence: thatMarkov

assumption
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1) (A.1)

Figure A.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
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state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.∑n
j=1 ai j = 1 ∀i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in state i.
Some states j may have π j = 0, meaning that they cannot
be initial states. Also,

∑n
i=1 πi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with π = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden

part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
∑N

j=1 ai j = 1 ∀i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation ot being generated
from a state i

π = π1,π2, ...,πN an initial probability distribution over states. πi is the probability that
the Markov chain will start in state i. Some states j may have π j = 0,
meaning that they cannot be initial states. Also,

∑n
i=1 πi = 1
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A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi−1) = P(qi|qi−1) (A.4)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (A.5)

To exemplify these models, we’ll use a task invented by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2020, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O (each an integer representing the
number of ice creams eaten on a given day) find the ‘hidden’ sequence
Q of weather states (H or C) which caused Jason to eat the ice cream.

Figure A.2 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

π = [.8,.2]
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P(2 | COLD)    =    .4
P(3 | COLD)          .1
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Figure A.2 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in
the 1960s, introduced the idea that hidden Markov models should be characterized
by three fundamental problems:

Problem 1 (Likelihood): Given an HMM λ = (A,B) and an observation se-
quence O, determine the likelihood P(O|λ ).

Problem 2 (Decoding): Given an observation sequence O and an HMM λ =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 8. In the next two sections
we introduce the Forward and Forward-Backward algorithms to solve Problems 1
and 3 and give more information on Problem 2
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A.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the ice-cream eating HMM in Fig. A.2, what is the probability
of the sequence 3 1 3? More formally:

Computing Likelihood: Given an HMM λ = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|λ ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
sequence of observations have the same length. 1

Given this one-to-one mapping and the Markov assumptions expressed in Eq. A.4,
for a particular hidden state sequence Q = q0,q1,q2, ...,qT and an observation se-
quence O = o1,o2, ...,oT , the likelihood of the observation sequence is

P(O|Q) =

T∏
i=1

P(oi|qi) (A.6)

The computation of the forward probability for our ice-cream observation 3 1 3 from
one possible hidden state sequence hot hot cold is shown in Eq. A.7. Figure A.3
shows a graphic representation of this computation.

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold) (A.7)

coldhot
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hot
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.2 .1

Figure A.3 The computation of the observation likelihood for the ice-cream events 3 1 3
given the hidden state sequence hot hot cold.

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by

1 In a variant of HMMs called segmental HMMs (in speech recognition) or semi-HMMs (in text pro-
cessing) this one-to-one mapping between the length of the hidden state sequence and the length of the
observation sequence does not hold.
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summing over all possible weather sequences, weighted by their probability. First,
let’s compute the joint probability of being in a particular weather sequence Q and
generating a particular sequence O of ice-cream events. In general, this is

P(O,Q) = P(O|Q)×P(Q) =

T∏
i=1

P(oi|qi)×
T∏

i=1

P(qi|qi−1) (A.8)

The computation of the joint probability of our ice-cream observation 3 1 3 and one
possible hidden state sequence hot hot cold is shown in Eq. A.9. Figure A.4 shows
a graphic representation of this computation.

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)
×P(3|hot)×P(1|hot)×P(3|cold) (A.9)
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Figure A.4 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

Now that we know how to compute the joint probability of the observations
with a particular hidden state sequence, we can compute the total probability of the
observations just by summing over all possible hidden state sequences:

P(O) =
∑

Q

P(O,Q) =
∑

Q

P(O|Q)P(Q) (A.10)

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T ) algorithm called the forward algorithm. The forward algorithm is a kindforward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure A.5 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.
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Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3.
Hidden states are in circles, observations in squares. The figure shows the computation of αt( j) for two states at
two time steps. The computation in each cell follows Eq. A.12: αt( j) =

∑N
i=1 αt−1(i)ai jb j(ot). The resulting

probability expressed in each cell is Eq. A.11: αt( j) = P(o1,o2 . . .ot ,qt = j|λ ).

Each cell of the forward algorithm trellis αt( j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton λ . The value
of each cell αt( j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ ) (A.11)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability αt( j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value αt( j) is computed as

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot) (A.12)

The three factors that are multiplied in Eq. A.12 in extending the previous paths
to compute the forward probability at time t are

αt−1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

Consider the computation in Fig. A.5 of α2(2), the forward probability of being
at time step 2 in state 2 having generated the partial observation 3 1. We compute by
extending the α probabilities from time step 1, via two paths, each extension con-
sisting of the three factors above: α1(1)×P(H|C)×P(1|H) and α1(2)×P(H|H)×
P(1|H).

Figure A.6 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. A.7 and a statement of the definitional recursion here.
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Figure A.6 Visualizing the computation of a single element αt(i) in the trellis by summing
all the previous values αt−1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for αt(i).

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N,T]
for each state s from 1 to N do ; initialization step

forward[s,1]←πs ∗ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t]←
N∑

s′=1

forward[s′, t−1] ∗ as′,s ∗ bs(ot)

forwardprob←
N∑

s=1

forward[s,T ] ; termination step

return forwardprob

Figure A.7 The forward algorithm, where forward[s, t] represents αt(s).

1. Initialization:

α1( j) = π jb j(o1) 1≤ j ≤ N

2. Recursion:

αt( j) =
N∑

i=1

αt−1(i)ai jb j(ot); 1≤ j ≤ N,1 < t ≤ T

3. Termination:

P(O|λ ) =
N∑

i=1

αT (i)
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A.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequencedecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find the
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM λ = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 2.
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Figure A.8 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. A.14: vt( j) = max1≤i≤N−1 vt−1(i) ai j b j(ot). The resulting probability expressed in each cell
is Eq. A.13: vt( j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j|λ ).

Figure A.8 shows an example of the Viterbi trellis for computing the best hidden
state sequence for the observation sequence 3 1 3. The idea is to process the ob-
servation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q1, ...,qt−1, given the
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automaton λ . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q1,...,qt−1

P(q1...qt−1,o1,o2 . . .ot ,qt = j|λ ) (A.13)

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q1,...,qt−1
. Like other dynamic programming algo-

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t−1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot) (A.14)

The three factors that are multiplied in Eq. A.14 for extending the previous paths to
compute the Viterbi probability at time t are

vt−1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1]←πs ∗ bs(o1)
backpointer[s,1]←0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t]← N
max

s′=1
viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

backpointer[s,t]← N
argmax

s′=1

viterbi[s′, t−1] ∗ as′,s ∗ bs(ot)

bestpathprob← N
max

s=1
viterbi[s,T ] ; termination step

bestpathpointer← N
argmax

s=1
viterbi[s,T ] ; termination step

bestpath← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob

Figure A.9 Viterbi algorithm for finding optimal sequence of hidden states. Given an observation sequence
and an HMM λ =(A,B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

Figure A.9 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
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have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. A.10, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi
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Figure A.10 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = π jb j(o1) 1≤ j ≤ N

bt1( j) = 0 1≤ j ≤ N

2. Recursion

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T

btt( j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T

3. Termination:

The best score: P∗ =
N

max
i=1

vT (i)

The start of backtrace: qT∗ =
N

argmax
i=1

vT (i)

A.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.
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The input to such a learning algorithm would be an unlabeled sequence of ob-
servations O and a vocabulary of potential hidden states Q. Thus, for the ice cream
task, we would start with a sequence of observations O = {1,3,2, ...,} and the set of
hidden states H and C.

The standard algorithm for HMM training is the forward-backward, or Baum-Forward-
backward

Welch algorithm (Baum, 1972), a special case of the Expectation-MaximizationBaum-Welch

or EM algorithm (Dempster et al., 1977). The algorithm will let us train both theEM

transition probabilities A and the emission probabilities B of the HMM. EM is an
iterative algorithm, computing an initial estimate for the probabilities, then using
those estimates to computing a better estimate, and so on, iteratively improving the
probabilities that it learns.

Let us begin by considering the much simpler case of training a fully visible
Markov model, we’re know both the temperature and the ice cream count for every
day. That is, imagine we see the following set of input observations and magically
knew the aligned hidden state sequences:

3 3 2 1 1 2 1 2 3

hot hot cold cold cold cold cold hot hot

This would easily allow us to compute the HMM parameters just by maximum
likelihood estimation from the training data. First, we can compute π from the count
of the 3 initial hidden states:

πh = 1/3 πc = 2/3

Next we can directly compute the A matrix from the transitions, ignoring the final
hidden states:

p(hot|hot) = 2/3 p(cold|hot) = 1/3
p(cold|cold) = 2/3 p(hot|cold) = 1/3

and the B matrix:

P(1|hot) = 0/4 = 0 p(1|cold) = 3/5 = .6
P(2|hot) = 1/4 = .25 p(2|cold = 2/5 = .4
P(3|hot) = 3/4 = .75 p(3|cold) = 0

For a real HMM, we cannot compute these counts directly from an observation
sequence since we don’t know which path of states was taken through the machine
for a given input. For example, suppose I didn’t tell you the temperature on day 2,
and you had to guess it, but you (magically) had the above probabilities, and the
temperatures on the other days. You could do some Bayesian arithmetic with all the
other probabilities to get estimates of the likely temperature on that missing day, and
use those to get expected counts for the temperatures for day 2.

But the real problem is even harder: we don’t know the counts of being in any
of the hidden states!! The Baum-Welch algorithm solves this by iteratively esti-
mating the counts. We will start with an estimate for the transition and observation
probabilities and then use these estimated probabilities to derive better and better
probabilities. And we’re going to do this by computing the forward probability for
an observation and then dividing that probability mass among all the different paths
that contributed to this forward probability.

To understand the algorithm, we need to define a useful probability related to the
forward probability and called the backward probability. The backward probabil-backward

probability
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ity β is the probability of seeing the observations from time t + 1 to the end, given
that we are in state i at time t (and given the automaton λ ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ ) (A.15)

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

βT (i) = 1, 1≤ i≤ N

2. Recursion

βt(i) =
N∑

j=1

ai j b j(ot+1) βt+1( j), 1≤ i≤ N,1≤ t < T

3. Termination:

P(O|λ ) =
N∑

j=1

π j b j(o1) β1( j)

Figure A.11 illustrates the backward induction step.

ot+1
ot

ai1

ai2

aiN

ai3

b1(ot+1)

βt(i)= Σj βt+1(j) aij  bj(ot+1) 

q1

q2

q3

qN

q1

qi

q2

q1

q2

ot-1

q3

qN

βt+1(N)

βt+1(3)

βt+1(2)

βt+1(1)

b2(ot+1)
b3(ot+1)

bN(ot+1)

Figure A.11 The computation of βt(i) by summing all the successive values βt+1( j)
weighted by their transition probabilities ai j and their observation probabilities b j(ot+1). Start
and end states not shown.

We are now ready to see how the forward and backward probabilities can help
compute the transition probability ai j and observation probability bi(ot) from an ob-
servation sequence, even though the actual path taken through the model is hidden.

Let’s begin by seeing how to estimate âi j by a variant of simple maximum like-
lihood estimation:

âi j =
expected number of transitions from state i to state j

expected number of transitions from state i
(A.16)

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transition i→ j was taken at a particular
point in time t in the observation sequence. If we knew this probability for each
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particular time t, we could sum over all times t to estimate the total count for the
transition i→ j.

More formally, let’s define the probability ξt as the probability of being in state
i at time t and state j at time t +1, given the observation sequence and of course the
model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ ) (A.17)

To compute ξt , we first compute a probability which is similar to ξt , but differs in
including the probability of the observation; note the different conditioning of O
from Eq. A.17:

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ ) (A.18)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure A.12 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|λ ): the α and β probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c©1989 IEEE.

Figure A.12 shows the various probabilities that go into computing not-quite-ξt :
the transition probability for the arc in question, the α probability before the arc, the
β probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai jb j(ot+1)βt+1( j) (A.19)

To compute ξt from not-quite-ξt , we follow the laws of probability and divide by
P(O|λ ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z)

(A.20)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance):

P(O|λ ) =
N∑

j=1

αt( j)βt( j) (A.21)
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So, the final equation for ξt is

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)∑N

j=1 αt( j)βt( j)
(A.22)

The expected number of transitions from state i to state j is then the sum over all
t of ξ . For our estimate of ai j in Eq. A.16, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

∑T−1
t=1 ξt(i, j)∑T−1

t=1
∑N

k=1 ξt(i,k)
(A.23)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(A.24)

For this, we will need to know the probability of being in state j at time t, which
we will call γt( j):

γt( j) = P(qt = j|O,λ ) (A.25)

Once again, we will compute this by including the observation sequence in the
probability:

γt( j) =
P(qt = j,O|λ )

P(O|λ )
(A.26)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure A.13 The computation of γt( j), the probability of being in state j at time t. Note
that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. A.12 with
state i collapsed with state j. After Rabiner (1989) which is c©1989 IEEE.

As Fig. A.13 shows, the numerator of Eq. A.26 is just the product of the forward
probability and the backward probability:

γt( j) =
αt( j)βt( j)

P(O|λ )
(A.27)
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We are ready to compute b. For the numerator, we sum γt( j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the
denominator, we sum γt( j) over all time steps t. The result is the percentage of the
times that we were in state j and saw symbol vk (the notation

∑T
t=1 s.t.Ot=vk

means
“sum over all t for which the observation at time t was vk”):

b̂ j(vk) =

∑T
t=1 s.t.Ot=vk

γt( j)∑T
t=1 γt( j)

(A.28)

We now have ways in Eq. A.23 and Eq. A.28 to re-estimate the transition A and ob-
servation B probabilities from an observation sequence O, assuming that we already
have a previous estimate of A and B.

These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm (Fig. A.14) starts with some initial estimate of the
HMM parameters λ = (A,B). We then iteratively run two steps. Like other cases of
the EM (expectation-maximization) algorithm, the forward-backward algorithm has
two steps: the expectation step, or E-step, and the maximization step, or M-step.E-step

M-step In the E-step, we compute the expected state occupancy count γ and the expected
state transition count ξ from the earlier A and B probabilities. In the M-step, we use
γ and ξ to recompute new A and B probabilities.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step

γt( j) =
αt( j)βt( j)

αT (qF )
∀ t and j

ξt(i, j) =
αt(i)ai jb j(ot+1)βt+1( j)

αT (qF )
∀ t, i, and j

M-step

âi j =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

N∑
k=1

ξt(i,k)

b̂ j(vk) =

T∑
t=1s.t. Ot=vk

γt( j)

T∑
t=1

γt( j)

return A, B

Figure A.14 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsu-
pervised learning of the A and B parameters, in practice the initial conditions are
very important. For this reason the algorithm is often given extra information. For
example, for HMM-based speech recognition, the HMM structure is often set by
hand, and only the emission (B) and (non-zero) A transition probabilities are trained
from a set of observation sequences O.
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A.6 Summary

This chapter introduced the hidden Markov model for probabilistic sequence clas-
sification.

• Hidden Markov models (HMMs) are a way of relating a sequence of obser-
vations to a sequence of hidden classes or hidden states that explain the
observations.

• The process of discovering the sequence of hidden states, given the sequence
of observations, is known as decoding or inference. The Viterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are the A transition probability matrix and the B
observation likelihood matrix. Both can be trained with the Baum-Welch or
forward-backward algorithm.

Bibliographical and Historical Notes
As we discussed in Chapter 8, Markov chains were first used by Markov (1913)
(translation Markov 2006), to predict whether an upcoming letter in Pushkin’s Eu-
gene Onegin would be a vowel or a consonant. The hidden Markov model was de-
veloped by Baum and colleagues at the Institute for Defense Analyses in Princeton
(Baum and Petrie 1966, Baum and Eagon 1967).

The Viterbi algorithm was first applied to speech and language processing in the
context of speech recognition by Vintsyuk (1968) but has what Kruskal (1983) calls
a “remarkable history of multiple independent discovery and publication”. Kruskal
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rithm published in four separate fields:

Citation Field
Viterbi (1967) information theory
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Needleman and Wunsch (1970) molecular biology
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Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the term Viterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problem in speech and language
processing. For non-probabilistic problems (such as for minimum edit distance), the
plain term dynamic programming is often used. Forney, Jr. (1973) wrote an early
survey paper that explores the origin of the Viterbi algorithm in the context of infor-
mation and communications theory.

Our presentation of the idea that hidden Markov models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Ferguson of IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM.
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